Neural Networks Models for Entity Discovery and Linking

نویسندگان

  • Dan Liu
  • Wei Lin
  • Shiliang Zhang
  • Si Wei
  • Hui Jiang
چکیده

This paper describes the USTC NELSLIP systems submitted to the Trilingual Entity Detection and Linking (EDL) track in 2016 TAC Knowledge Base Population (KBP) contests. We have built two systems for entity discovery and mention detection (MD): one uses the conditional RNNLM and the other one uses the attention-based encoder-decoder framework. The entity linking (EL) system consists of two modules: a rule based candidate generation and a neural networks probability ranking model. Moreover, some simple string matching rules are used for NIL clustering. At the end, our best system has achieved an F1 score of 0.624 in the end-to-end typed mention ceaf plus metric.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The IBM Systems for Trilingual Entity Discovery and Linking at TAC

This paper describes the IBM systems for the Trilingual Entity Discovery and Linking (EDL) for the TAC 2015 KnowledgeBase Population track. The entity discovery or mention detection (MD) system is based on system combination of deep neural networks and conditional random fields. The entity linking (EL) system is based on a language independent probabilistic disambiguation model. The same EL mod...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

The Limited Effectiveness of Neural Networks for Simple Question Answering on Knowledge Graphs

Simple factoid question answering (QA) is a task, where the questions can be answered by looking up a single fact in the knowledge base (KB). However, this QA task is difficult, since retrieving a single supporting fact involves searching many alternatives given a query expressed in natural language. We use a retrieval-based approach to QA. We decompose the problem into four sub-problems: entit...

متن کامل

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

PREDICTION OF COMPRESSIVE STRENGTH AND DURABILITY OF HIGH PERFORMANCE CONCRETE BY ARTIFICIAL NEURAL NETWORKS

Neural networks have recently been widely used to model some of the human activities in many areas of civil engineering applications. In the present paper, artificial neural networks (ANN) for predicting compressive strength of cubes and durability of concrete containing metakaolin with fly ash and silica fume with fly ash are developed at the age of 3, 7, 28, 56 and 90 days. For building these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.03558  شماره 

صفحات  -

تاریخ انتشار 2016